Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle

Author:

Akhtar Rashid A.1,Abdel-Latif Ata A.1

Affiliation:

1. Department of Cell and Molecular Biology, School of Medicine, Medical College of Georgia, Augusta, GA 30912, U.S.A.

Abstract

1. The mechanism of acetylcholine-stimulated breakdown of phosphatidyl-myo-inositol 4,5-bisphosphate and its dependence on extracellular Ca2+ was investigated in the rabbit iris smooth muscle. 2. Acetylcholine (50μm) increased the breakdown of phosphatidylinositol bisphosphate in [3H]inositol-labelled muscle by 28% and the labelling of phosphatidylinositol by 24% of that of the control. Under the same experimental conditions there was a 33 and 48% increase in the production of 3H-labelled inositol trisphosphate and inositol monophosphate respectively. Similarly carbamoylcholine and ionophore A23187 increased the production of these water-soluble inositol phosphates. Little change was observed in the 3H radioactivity of inositol bisphosphate. 3. Both inositol trisphosphatase and inositol monophosphatase were demonstrated in subcellular fractions of this tissue and the specific activity of the former was severalfold higher than that of the latter. 4. The acetylcholine-stimulated production of inositol trisphosphate and inositol monophosphate was inhibited by atropine (20μm), but not tubocurarine (100μm); and it was abolished by depletion of extracellular Ca2+ with EGTA, but restored on addition of low concentrations of Ca2+ (20μm). 5. Calcium-antagonistic agents, such as verapamil (20μm), dibenamine (20μm) or La3+ (2mm), also abolished the production of the water-soluble inositol phosphates in response to acetylcholine. 6. Release of inositol trisphosphate from exogenous phosphatidylinositol bisphosphate by iris muscle microsomal fraction (‘microsomes’) was stimulated by 43% in the presence of 50μm-Ca2+. 7. The results indicate that increased Ca2+ influx into the iris smooth muscle by acetylcholine and ionophore A23187 markedly activates phosphatidylinositol bisphosphate phosphodiesterase and subsequently increases the production of inositol trisphosphate and its hydrolytic product inositol monophosphate. The marked increase observed in the production of inositol monophosphate could also result from Ca2+ activation of phosphatidylinositol phosphodiesterase. However, there was no concomitant decrease in the 3H radioactivity of this phospholipid.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Class I PI3K Biology;Current Topics in Microbiology and Immunology;2022

2. A Short Historical Perspective of Methods in Inositol Phosphate Research;Methods in Molecular Biology;2019-11-27

3. ORAI Calcium Channels;Physiology;2017-07

4. A short history of inositol lipids;Journal of Lipid Research;2016-11

5. A personal journey with bioactive lipids;European Journal of Lipid Science and Technology;2015-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3