Expression of wild-type and mutated rabbit osteopontin in Escherichia coli, and their effects on adhesion and migration of P388D1 cells

Author:

Nasu K1,Ishida T1,Setoguchi M1,Higuchi Y1,Akizuki S1,Yamamoto S1

Affiliation:

1. Department of Pathology, Oita Medical University, Hasama-machi, Oita 879-55, Japan

Abstract

Recombinant wild-type rabbit osteopontin (rOP) and the protein with an aspartate-to-glutamate transposition induced by a point mutation in the rabbit OP cDNA within the Gly-Arg-Gly-Asp-Ser (GRGDS) sequence were expressed in Escherichia coli and purified to homogeneity. P388D1 cells bound rOP in a saturable manner. rOP induced adhesion and haptotaxis of P388D1 cells, whereas mutated rabbit OP (rOPmut) did not. Anti-rOP IgG F(ab′)2 and synthetic GRGDS peptide inhibited rOP-mediated adhesion and haptotaxis of P388D1 cells. Fibronectin (FN)-mediated adhesion of P388D1 cells was markedly inhibited in the presence of fluid-phase rOP. Adhesion of P388D1 cells to rOP was significantly inhibited by anti-[alpha-subunits of VLA4 (alpha 4) and VLA5 (alpha 5)] monoclonal antibodies (mAbs), but not by anti-[alpha-subunit of vitronectin (VN) receptor (alpha V) or Mac-1 (alpha M)] mAb. Adhesion of P388D1 cells to FN and VN was significantly inhibited by anti-alpha V mAb but not anti-alpha 4, -alpha 5 or -alpha M mAb. Haptotaxis of P388D1 cells to rOP was significantly inhibited by anti-alpha V mAb, but not by anti-alpha 4, -alpha 5 and alpha M mAbs, whereas that to FN showed no inhibition with all three mAbs. Haptotaxis of P388D1 cells to VN was significantly inhibited by anti-alpha 5 and -alpha V mAbs but not by anti-alpha 4 and -alpha M mAbs. Similar features of inhibition of adhesion and haptotaxis of P388D1 cells to human OP were observed by mAbs. rOP had no chemotactic effect on P388D1 cells. Significant polymorphonuclear leucocyte migration was observed 3-12 h after intradermal injection of rOP into rabbits.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3