The occurrence of disulphide bonds in purified clathrin light chains

Author:

Parham P1,Brodsky F M2,Drickamer K3

Affiliation:

1. Department of Cell Biology, Stanford University, Stanford, CA 94305, U.S.A.

2. tDepartment of Pharmacy, University of California, San Francisco, CA 94143, U.S.A.

3. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, U.S.A.

Abstract

Three forms of clathrin light chain contain two cysteine residues. These are the predominant brain-specific forms of LCa and LCb and the non-brain form of LCb. After purification in the absence of thiols they contain intramolecular disulphide bonds. The reduced and the oxidized forms show differences in electrophoretic mobility, explaining the variable and heterogeneous patterns observed on electrophoresis. Accessibility of the thiol groups in the free light chains is greater than when they are associated with the heavy chain. In contrast the cysteine residues of the clathrin heavy chain are completely inaccessible in the absence of denaturants and are not found in disulphide bonds. The antigenic properties of the oxidized and the reduced forms of the clathrin light chains are similar, as is their capacity to bind to the clathrin heavy chain. After isolation in the presence of 10 mM-iodoacetamide, the light-chain cysteine residues are fully alkylated. The results are consistent with the reduced form being the native state and the light-chain disulphide bonds an artifact of isolation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clathrin and Clathrin-Mediated Membrane Traffic;Encyclopedia of Cell Biology;2023

2. Clathrin Light Chains: Not to Be Taken so Lightly;Frontiers in Cell and Developmental Biology;2021-12-14

3. Clathrin and Clathrin-Dependent Endocytosis;Encyclopedia of Cell Biology;2016

4. Diversity of Clathrin Function: New Tricks for an Old Protein;Annual Review of Cell and Developmental Biology;2012-11-10

5. Functional evidence for the identification of anArabidopsisclathrin light chain polypeptide;FEBS Letters;2002-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3