The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals

Author:

Pusztai M1,Fast P2,Gringorten L2,Kaplan H3,Lessard T1,Carey P R1

Affiliation:

1. Division of Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A OR6

2. Forestry Canada, Forest Pest Management Institute, Sault Ste. Marie, Oniario, Canada P6A 5M7

3. Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada KIN 6N5

Abstract

Detailed photostability studies were carried out using purified delta-endotoxin crystals from Bacillus thuringiensis subspecies HD-1 and HD-73. The mechanism and time course of sunlight inactivation was investigated by: (a) monitoring the tryptophan damage in the intact crystals by Raman spectroscopy, (b) amino acid analysis and (c) biological assays using insects. The results demonstrate that, for purified HD-1 or HD-73 crystals, the 300-380 nm range of the solar spectrum is largely responsible for bringing about crystal damage and consequent loss of toxicity. Purified Bacillus thuringiensis crystals that were exposed to fermentation liquor after cell lysis were more quickly degraded by sunlight than were crystals from cells that were lysed in water. This effect is attributed to adsorption of chromophores by crystals exposed to the fermenter liquor and the subsequent ability of these chromophores to act as photosensitizers. The importance of a photosensitization mechanism in crystal degradation was further emphasized by irradiating Bacillus thuringiensis crystals in vacuo. The latter crystals were found to be less damaged (20% tryptophan loss after 24 h irradiation by the solar spectrum) compared with crystals from the same sample irradiated in air (60% (60% tryptophan loss). Other methods of decreasing exposure of the crystals to oxygen, e.g. by using glycerol as a humectant, were also found to be successful in controlling photodamage. The results concerning photodegradation support a photosensitization mechanism involving the presence of exogenous (and possibly endogenous) chromophores which create singlet oxygen species upon irradiation by light.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3