The hydrolysis of monolayers of phosphatidyl-[Me−14C]choline by phospholipase D

Author:

Quarles R. H.1,Dawson R. M. C.1

Affiliation:

1. Department of Biochemistry, Agricultural Research Council Institute of Animal Physiology, Babraham, Cambridge

Abstract

1. The hydrolysis of monolayers of phosphatidyl[Me−14C]choline at the air/water interface by phospholipase D (phosphatidylcholine phosphatidohydrolase) was investigated by a surface-radioactivity technique by using a flow counter. 2. Phosphatidylcholine of high specific radioactivity was prepared biosynthetically in good yield from [Me−14C]choline by using Saccharomyces cerevisiae. 3. At initial monolayer pressures between 12 and 25 dynes/cm. the hydrolysis occurred in two stages, an initial slow hydrolysis followed by a rapid hydrolysis. Below 3dynes/cm. and above 28dynes/cm. no enzymic hydrolysis of pure phosphatidylcholine monolayers could be detected. 4. The rapid hydrolysis was proportional to the enzyme concentration in the subphase, its pH optimum was 6·6, and 0·2mm-Ca2+ was required for maximal activity. 5. Hydrolysis of the film was accompanied by a pronounced fall in the surface pressure even though the phosphatidic acid formed did not leave the film. When the pressure fell to low values the hydrolysis ceased even if the film was only partially hydrolysed. 6. Above monolayer pressures of 28dynes/cm. enzymic hydrolysis could be initiated by inclusion of phosphatidic acid (and less effectively stearyl hydrogen sulphate) in the film, although the rates were not appreciably higher than those observed at 25dynes/cm. with a pure phosphatidylcholine film. 7. The initiation of the hydrolysis by phosphatidic acid was facilitated by the inclusion of high Ca2+ concentrations and certain carboxylic acid buffer anions in the subphase, although these did not activate by themselves. 8. The initiation of the hydrolysis at high pressures could not be related to any change in the surface potential brought about by the addition of the long-chain anions to the film, nor could it be ascribed to a surface dilution effect. 9. The results are discussed in relation to previous studies on the hydrolysis of phosphatidylcholine particles by the enzyme and also similar investigations on phosphatidylcholine monolayers with other phospholipases.

Publisher

Portland Press Ltd.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autologous tumor immunizing devascularization in cancer therapy;Medical Hypotheses;2016-04

2. Biomimetic Membranes;Molecular Assembly of Biomimetic Systems;2010-12-28

3. Modulation of phospholipase D activity in vitro;Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids;2009-09

4. Hydrolysis characterization of phospholipid monolayers catalyzed by different phospholipases at the air–water interface;Advances in Colloid and Interface Science;2007-02

5. Biophysics of sphingolipids II. Glycosphingolipids: An assortment of multiple structural information transducers at the membrane surface;Biochimica et Biophysica Acta (BBA) - Biomembranes;2006-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3