Active-site modification of native and mutant forms of inosine 5′-monophosphate dehydrogenase from Escherichia coli K12

Author:

Gilbert Harry J.1,Drabble William T.1

Affiliation:

1. Department of Biochemistry, University of Southampton, Southampton SO9 3TU, U.K.

Abstract

IMP dehydrogenase of Escherichia coli was irreversibly inactivated by Cl-IMP (6-chloro-9-β-d-ribofuranosylpurine 5′-phosphate, 6-chloropurine ribotide). The inactivation reaction showed saturation kinetics. 6-Chloropurine riboside did not inactivate the enzyme. Inactivation by Cl-IMP was retarded by ligands that bind at the IMP-binding site. Their effectiveness was IMP>XMP>GMP»AMP. NAD+ did not protect the enzyme from modification. Inactivation of IMP dehydrogenase was accompanied by a change in λmax. of Cl-IMP from 263 to 290nm, indicating formation of a 6-alkylmercaptopurine nucleotide. The spectrum of 6-chloropurine riboside was not changed by IMP dehydrogenase. With excess Cl-IMP the increase in A290 with time was first-order. Thus it appears that Cl-IMP reacts with only one species of thiol at the IMP-binding site of the enzyme: 2–3mol of Cl-IMP were bound per mol of IMP dehydrogenase tetramer. Of ten mutant enzymes from guaB strains, six reacted with Cl-IMP at a rate similar to that for the native enzyme. The interaction was retarded by IMP. None of the mutant enzymes reacted with 6-chloropurine riboside. 5,5′-Dithiobis-(2-nitrobenzoic acid), iodoacetate, iodoacetamide and methyl methanethiosulphonate also inactivated IMP dehydrogenase. Reduced glutathione re-activated the methanethiolated enzyme, and 2-mercaptoethanol re-activated the enzyme modified by Cl-IMP. IMP did not affect the rate of re-activation of methanethiolated enzyme. Protective modification indicates that Cl-IMP, methyl methanethiosulphonate and iodoacetamide react with the same thiol groups in the enzyme. This is also suggested by the low incorporation of iodo[14C]acetamide into Cl-IMP-modified enzyme. Hydrolysis of enzyme inactivated by iodo[14C]acetamide revealed radioactivity only in S-carboxymethylcysteine. The use of Cl-IMP as a probe for the IMP-binding site of enzymes from guaB mutants is discussed, together with the possible function of the essential thiol groups.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3