Activities of branched-chain 2-oxo acid dehydrogenase and its components in skin fibroblasts from normal and classical-maple-syrup-urine-disease subjects

Author:

Chuang D T,Niu W L,Cox R P

Abstract

1. Comparisons of the activity and kinetics of the branched-chain 2-oxo acid dehydrogenase in cultured skin fibroblasts from normal and classical maple-syrup-urine-disease (MSUD) subjects provide a kinetic explanation for the enzyme defect. 2. In the intact cell assays, normal fibroblasts demonstrated hyperbolic kinetics with 3-methyl-2-oxo[1-14C]butyrate as a substrate. Intact fibroblasts from four classical MSUD patients showed no decarboxylation over a substrate concentration range of 0.25 to 5.0 mM, and thiamin (4 mM) was without effect. 3. The overall reaction of the multienzyme complex was efficiently reconstituted by using a disrupted-cell system. Normals again showed typical hyperbolic kinetics at the 2-oxo acid concentrations of 0.1 to 5 mM. The Vmax. and apparent Km values were 0.10 +/- 0.02 m-unit/mg of protein and 0.05-0.1 mM respectively, with 3-methyl-2-oxobutyrate. In contrast, classical MSUD patients exhibited sigmoidal kinetics (Hill coefficient, 2.5) with activity approaching 40-60% of the normal value at 5 mM substrate. The K0.5 values from the Hill plots for MSUD patients were 4-7 mM. 4. The E1 (branched-chain 2-oxo acid decarboxylase) component of the multienzyme complex was measured in disrupted-particulate preparations. Normals again showed hyperbolic kinetics with the 2-oxo acid, whereas MSUD preparations exhibited sigmoidal kinetics with the activity of E1 strictly dependent on substrate concentration. Apparent Km or K0.5 were 0.1 and 1.0 mM for normal and MSUD subjects respectively. 5. Measurements of E2 (dihydrolipoyl transacylase) and E3 (dihydrolipoyl dehydrogenase) in MSUD preparations showed them to be in the normal range. 6. The above data suggest a defect in the E1 step of branched-chain 2-oxo acid dehydrogenase in classical MSUD patients.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3