Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide–adenine dinucleotide and the cytochromes in Torulopsis utilis

Author:

Haddock B. A.1,Garland P. B.1

Affiliation:

1. Department of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.

Abstract

1. Conditions have been established for the sulphate-limited growth of Torulopsis utilis in continuous culture. 2. Mitochondria prepared from sulphate-limited cells lack both piericidin A sensitivity and the first energy-conservation site (site 1). Sensitivity to antimycin A or cyanide and the second and third energy-conservation sites were apparently unaffected by sulphate-limited growth. 3. Aerobic incubation for 8h of sulphate-limited cells with a low concentration of sulphate (50μm or less) resulted in the recovery of mitochondrial piericidin A sensitivity and site 1. The use of higher concentrations of sulphate (250μm or more) still resulted in the recovery of mitochondrial piericidin A sensitivity and site 1, but also resulted in the appearance of a non-phosphorylating oxidase, which mediated oxidation of the respiratory chain at about the level of cytochrome b in an antimycin A- and cyanide-insensitive manner. Both this alternative route and the conventional normal route of respiration were shown to coexist and to intercommunicate at the level of cytochrome b. 4. Low-temperature spectroscopy failed to identify any new respiratory component to explain the alternative route. 5. The apparent affinity of the alternative route for oxygen was similar to that for the conventional route through cytochrome oxidase, namely half-maximal activity at 0.1μm-oxygen or less. 6. The non-haem iron concentration of submitochondrial particles was unaffected by sulphate limitation, whereas the acid-labile sulphide concentration was lowered tenfold. Marked increases (between four- and 30-fold) in the acid-labile sulphide concentration of submitochondrial particles were observed in sulphate-limited cells after aerobic incubation with various concentrations of sulphate. The lowest increase (fourfold) was observed without added sulphate, the highest (30-fold) with 1.0mm added sulphate. 7. The ratio of non-haem iron to acid-labile sulphide in submitochondrial particles varied with different growth conditions from a maximum of 15.0 to a minimum of 0.72. It is suggested that analytical measurements of non-haem iron are an inadequate guide to the concentration of iron–sulphur protein in complex systems. 8. The effects of sulphate-limited growth on site 1 and piericidin sensitivity are interpreted to indicate a role for iron–sulphur protein in these properties. 9. The aerobic incubation of sulphate-limited cells with cycloheximide resulted in the recovery by mitochondria of site 1 but not of piericidin sensitivity. 10. The appearance of the alternative route for cyanide- and antimycin-A (but not piericidin A-) insensitive respiration on incubating sulphate-limited cells with sulphate concentrations higher than 250μm indicates that the alternative route involves an iron–sulphur protein.

Publisher

Portland Press Ltd.

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3