Humanizing mismatch repair in yeast: towards effective identification of hereditary non-polyposis colorectal cancer alleles

Author:

Aldred P.M.R.1,Borts R.H.1

Affiliation:

1. Department of Genetics, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, U.K.

Abstract

The correction of replication errors is an essential component of genetic stability. This is clearly demonstrated in humans by the observation that mutations in mismatch repair genes lead to HNPCC (hereditary non-polyposis colorectal cancer). This disease accounts for as many as 2–3% of colon cancers. Of these, most of them are in the two central components of mismatch repair, MLH1 (mutLhomologue 1) and MSH2 (mutShomologue 2). MLH1 and MSH2 function as a complex with two other genes PMS2 and MSH6. Mismatch repair genes, and the mechanism that ensures that incorrectly paired bases are removed, are conserved from prokaryotes to human. Thus yeast can serve as a model organism for analysing mutations/polymorphisms found in human mismatch repair genes for their effect on post-replicative repair. To date, this has predominantly been accomplished by making the analogous mutations in yeast genes. However, this approach is only useful for the most highly conserved regions. Here, we discuss some of the benefits and technical difficulties involved in expressing human genes in yeast. Modelling human mismatch repair in yeast will allow the assessment of any functional effect of novel polymorphisms found in patients diagnosed with colon cancers.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3