Measurement in vivo of hydrogenase-catalysed hydrogen evolution in the presence of nitrogenase enzyme in cyanobacteria

Author:

Daday A,Lambert G R,Smith G D

Abstract

A method was devised that allows measurement in vivo of hydrogenase-catalysed H2 evolution from the cyanobacterium Anabaena cylindrica, independent of nitrogenase activity, which is also present. Addition of low concentrations of reduced Methyl Viologen (1-10mM) to intact heterocystous filaments of the organism resulted in H2 evolution, but produced conditions giving total inhibition of nitrogenase (acetylene-reducing and H2-evolving) activity. That the H2 formed under these conditions was not contributed to by nitrogenase was also supported by the observation that its rate of formation was similar in the dark or with Ar replaced by N2 in the gas phase, and also in view of the pattern of H2 evolution at very low Methyl Viologen concentrations. Conclusive evidence that the H2 formed in the presence of Methyl Viologen was solely hydrogenase-mediated was its evolution even from nitrogenase-free (non-heterocystous) cultures; by contrast ‘uptake’ hydrogenase activity in such cultures was greatly decreased. The hydrogenase activity was inhibited by CO and little affected by acetylene. Finally the hydrogenase activity was shown to be relatively constant at different stages during the batch growth of the organism, as opposed to nitrogenase activity, which varied.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3