Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells

Author:

Willows Robin1,Sanders Matthew J.2,Xiao Bing2,Patel Bhakti R.1,Martin Stephen R.2,Read Jon3,Wilson Jon R.2,Hubbard Julia2,Gamblin Steven J.2,Carling David14

Affiliation:

1. Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London W12 0NN, U.K.

2. Francis Crick Insitute, 1 Midland Road, London NW1 1AT, U.K.

3. AstraZeneca, R&D, Discovery Sciences, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K.

4. Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, U.K.

Abstract

AMP-activated protein kinase (AMPK) plays a major role in regulating metabolism and has attracted significant attention as a therapeutic target for treating metabolic disorders. AMPK activity is stimulated more than 100-fold by phosphorylation of threonine 172 (Thr172). Binding of AMP to the γ subunit allosterically activates the kinase. Additionally, many small molecules, e.g. 991, have been identified that bind between the kinase domain and the carbohydrate-binding module of the β subunit, stabilising their interaction and leading to activation. It was reported recently that non-phosphorylated Thr172 AMPK is activated by AMP and A769662. We present here the crystal structure of non-phosphorylated Thr172 AMPK in complex with AMP and 991. This structure reveals that the activation loop, as well as the complex overall, is similar to the Thr172 phosphorylated complex. We find that in the presence of AMP and 991 non-phosphorylated Thr172, AMPK is much less active than the Thr172 phosphorylated enzyme. In human cells, the basal level of Thr172 phosphorylation is very low (∼1%), but is increased 10-fold by treatment with 2-deoxyglucose. In cells lacking the major Thr172 kinases, LKB1 and CaMKKβ, Thr172 phosphorylation is almost completely abolished, and AMPK activity is virtually undetectable. Our data show that AMP and 991 binding to non-phosphorylated Thr172 AMPK can induce an ordered, active-like, conformation of the activation loop explaining how AMPK activity can be measured in vitro without Thr172 phosphorylation. However, in a cellular context, phosphorylation of Thr172 is critical for significant activation of AMPK.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference51 articles.

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3