Abstract
A new low-molecular-weight bound sulphite was found in yeast enzyme reaction systems which convert the sulphur of 35S-labelled adenosine 3′-phosphate 5′-sulphatophosphate into exchangeable radioactive sulphite. This bound sulphite was separated from other components by paper electrophoresis and Sephadex G-25 chromatography, and shown to be a peptide with multiple thiol groups and an estimated mol.wt. of 1400. The labelled sulphur in this peptide is highly exchangeable with unlabelled sulphite, but exchangeability decreases with time and freeze-drying. The low-molecular-weight acceptor is tightly bound to enzyme B of the yeast system and, apparently, accepts the sulpho group of adenosine 3′-phosphate 5′-sulphatophosphate and is released as bound sulphite only in the presence of enzymically or chemically reduced fraction C. It is proposed that the low-molecular-weight acceptor is a carrier peptide which, after release of the reduced sulphur, becomes re-oxidized and returns to enzyme B. Fraction C appears to function as an obligatory reductant of the oxidized acceptor before it can accept another-SO-3-moiety from adenosine 3′-phosphate 5′-sulphatophosphate. These findings are consistent with mechanisms proposed for sulphate reduction in spinach and Chlorella, and suggest that fraction C is the natural thiol required in these systems. An improved column technique for the preparation of adenosine 3′-phosphate 5′-sulphatophosphate is described.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献