Intracellular adenosine 3′,5′-phosphate formation is essential for down-regulation of surface adenosine 3′,5′-phosphate receptors in Dictyostelium

Author:

Van Haastert P J M1

Affiliation:

1. Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Abstract

Dictyostelium discoideum cells contain cell surface cyclic AMP (cAMP) receptors that bind cAMP as a first messenger and intracellular cAMP receptors that bind cAMP as a second messenger. Prolonged incubation of Dictyostelium cells with cAMP induces a sequential process of phosphorylation, sequestration and down-regulation of the surface receptors. The role of intracellular cAMP in down-regulation of surface receptors was investigated. Down-regulation of receptors does not occur under conditions that specifically inhibit the formation of intracellular cAMP (the drug caffeine or mutant cells lacking adenylate cyclase) or conditions that inhibit the function of intracellular cAMP (mutants lacking protein kinase A activity). Cell-permeable non-hydrolysable cAMP derivatives were used to investigate further the requirement of intracellular cAMP for down-regulation. The Sp isomer of 6-thioethylpurineriboside 3′,5′-phosphorothioate (6SEth-cPuMPS) does not bind to the surface receptor, enters the cell and has relative high affinity for protein kinase A. 6SEth-cPuMPS alone has no effect on down-regulation. However, together with an agonist of the surface receptor, the analogue induces down-regulation in caffeine-treated wild-type cells and in mutant cells lacking adenylate cyclase, but not in mutant cells lacking protein kinase A. These results indicate that intracellular cAMP formation and activation of protein kinase A are essential for down-regulation of the surface cAMP receptor.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3