Insulin-responsive tissues contain the core complex protein SNAP-25 (synaptosomal-associated protein 25) A and B isoforms in addition to syntaxin 4 and synaptobrevins 1 and 2

Author:

JAGADISH Mittur N.1,FERNANDEZ Caroline S.1,HEWISH Dean R.1,MACAULAY S. Lance1,GOUGH Keith H.1,GRUSOVIN Julian1,VERKUYLEN Amanda1,COSGROVE Leah1,ALAFACI Annette1,FRENKEL Maurice J.1,WARD Colin W.1

Affiliation:

1. CSIRO, Division of Biomolecular Engineering, 343 Royal Parade, Parkville, Victoria 3052, Australia

Abstract

SNAP-25 (synaptosomal-associated protein 25), syntaxin and synaptobrevin are the three SNARE [soluble NSF attachment protein receptor (where NSF = N-ethylmaleimide-sensitive fusion protein)] proteins that form the core complex involved in synaptic vesicle docking and subsequent fusion with the target membrane. The present study is aimed at understanding the mechanisms of fusion of vesicles carrying glucose transporter proteins with the plasma membrane in human insulin-responsive tissues. It describes the isolation and characterization of cDNA molecules encoding SNAP-25 A and B isoforms, syntaxin 4 and synaptobrevins (also known as vehicle-associated membrane proteins) from two major human insulin-responsive tissues, skeletal muscle and fat. The DNA and deduced amino acid sequences of SNAP-25 revealed perfect identity with the previously reported human neural SNAP-25 A and B isoforms. Our results indicate the presence of both isoforms both in insulin-responsive tissues and in in vitro cultured 3T3-L1 cells, but suggest a differential pattern of gene expression: isoform A is the major species in adipose tissue, and isoform B is the major species in skeletal muscle. The presence of SNAP-25 protein in 3T3-L1 cells was demonstrated by immunofluorescence microscopy using an anti-SNAP-25 monoclonal antibody. Immunoprecipitation experiments using the same monoclonal antibody also revealed the presence of SNAP-25 protein in plasma membrane fractions from rat epididymal fat pads. The syntaxin 4-encoding region from skeletal muscle contains five nucleotide differences from the previously reported placental cDNA sequence, two of which result in amino acid changes: Asp-174 to Glu and Val-269 to Ala. The synaptobrevin 1 cDNA from skeletal muscle contains two nucleotide differences when compared with the corresponding clone from neural tissues, one of which is silent and the other resulting in the amino acid change Thr-102 to Ala. The cDNA sequence of the protein from fat is identical with that of human synaptobrevin 1 from neural tissues. Furthermore, we have confirmed the presence of syntaxin 4 in fat and of synaptobrevin 2 in skeletal muscle by PCR amplification and Southern hybridization analysis. Using the yeast two-hybrid system, an interaction was observed between the full-length cytoplasmic domains of syntaxin 4 and synaptobrevin 2, a vesicle membrane SNARE previously shown by others to be associated with vesicles carrying the GLUT4 glucose transporter protein, but no interaction was seen with synaptobrevin 1. Flow cytometry of low-density microsomes isolated from fat cells was used to demonstrate the binding of syntaxin 4 to a subset of vesicles carrying GLUT4 protein; whereas SNAP-25 on its own bound poorly to these vesicles, the syntaxin 4–SNAP-25 complex gave a strong interaction.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3