Affiliation:
1. School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
Abstract
Remarkably few enzymes are known to employ a mononuclear manganese ion that undergoes changes in redox state during catalysis. Many questions remain to be answered about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II), the nature of the dioxygen species involved in the catalytic mechanism, and how these enzymes acquire Mn(II) given that many other metal ions in the cell form more stable protein complexes. Here, we summarize current knowledge concerning the structure and mechanism of five mononuclear manganese-dependent enzymes: superoxide dismutase, oxalate oxidase (OxOx), oxalate decarboxylase (OxDC), homoprotocatechuate 3,4-dioxygenase, and lipoxygenase (LOX). Spectroscopic measurements and/or computational studies suggest that Mn(III)/Mn(II) are the catalytically active oxidation states of the metal, and the importance of ‘second-shell’ hydrogen bonding interactions with metal ligands has been demonstrated for a number of examples. The ability of these enzymes to modulate the redox properties of the Mn(III)/Mn(II) couple, thereby allowing them to generate substrate-based radicals, appears essential for accessing diverse chemistries of fundamental importance to organisms in all branches of life.
Subject
Molecular Biology,Biochemistry
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献