The Urinary F1 Activation Peptide of Human Prothrombin is a Potent Inhibitor of Calcium Oxalate Crystallization in Undiluted Human Urine in Vitro

Author:

Ryall Rosemary L.1,Grover Phulwinder K.1,Stapleton Alan M. F.1,Barrell Dianne K.1,Tang Yulu1,Moritz Robert L.2,Simpson Richard J.2

Affiliation:

1. Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia

2. Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research (Melbourne Branch) and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia

Abstract

1. The urinary F1 activation peptide of prothrombin is the predominant protein incorporated into calcium oxalate crystals precipitated from human urine. The aim of this study was to examine the effect of pure urinary prothrombin F1 on calcium oxalate crystallization in human urine. 2. Urinary prothrombin F1 was purified from demineralized calcium oxalate crystals precipitated from human urine, and its effects on calcium oxalate crystallization induced by addition of an oxalate load were tested in undiluted, ultrafiltered urine from healthy men, at final concentrations of 0 to 10 mg/l. 3. Urinary prothrombin F1 did not affect the amount of oxalate required to induce crystallization, but the volume of material deposited increased in proportion to increasing concentrations of urinary prothrombin F1. However, the mean particle size decreased in reverse order: this was confirmed by scanning electron microscopy, which showed it to be the result of a reduction in crystal aggregation rather than in the size of individual crystals. Analysis of 14C-oxalate data revealed a dose-dependent decrease in calcium oxalate deposition with an increase in urinary prothrombin F1 concentration, indicating that the increase in particle volume recorded by the Coulter Counter resulted from inclusion of urinary prothrombin F1 into the crystalline architecture, rather than increased deposition of calcium oxalate. 4. It was concluded that urinary prothrombin F1 may be an important macromolecular determinant of stone formation.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3