Molecular basis of function and the unusual antioxidant activity of a cyanobacterial cysteine desulfurase

Author:

Banerjee Manisha12,Chakravarty Dhiman12,Ballal Anand12

Affiliation:

1. Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

2. Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India

Abstract

Cysteine desulfurases, which supply sulfur for iron–sulfur cluster biogenesis, are broadly distributed in all phyla including cyanobacteria, the progenitors of plant chloroplasts. The SUF (sulfur utilization factor) system is responsible for Fe–S cluster biosynthesis under stress. The suf operon from cyanobacterium Anabaena PCC 7120 showed the presence of a cysteine desulfurase, sufS (alr2495), but not the accessory sulfur-accepting protein (SufE). However, an open reading frame (alr3513) encoding a SufE-like protein (termed AsaE, Anabaena sulfur acceptor E) was found at a location distinct from the suf operon. The purified SufS protein existed as a pyridoxal 5' phosphate (PLP)-containing dimer with a relatively low desulfurase activity. Interestingly, in the presence of the AsaE protein, the catalytic efficiency of this reaction increased 10-fold. In particular, for sulfur mobilization, the AsaE protein partnered only SufS and not other cysteine desulfurases from Anabaena. The SufS protein was found to physically interact with the AsaE protein, demonstrating that AsaE was indeed the missing partner of Anabaena SufS. The conserved cysteine of the SufS or the AsaE protein was essential for activity but not for their physical association. Curiously, overexpression of the SufS protein in Anabaena caused reduced formation of reactive oxygen species on exposure to hydrogen peroxide (H2O2), resulting in superior oxidative stress tolerance to the oxidizing agent when compared with the wild-type strain. Overall, the results highlight the functional interaction between the two proteins that mediate sulfur mobilization, in the cyanobacterial SUF pathway, and further reveal that overexpression of SufS can protect cyanobacteria from oxidative stress.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3