Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties

Author:

BUND Stuart J.1

Affiliation:

1. Department of Human Anatomy and Physiology, University College Dublin, Dublin 2, Ireland

Abstract

This investigation related arterial structure to myogenic (pressure-dependent) contractile responses in resistance arteries from spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) normotensive control rats under pressurized conditions in vitro. Femoral and mesenteric resistance arteries from either strain were cannulated and pressurized in an arteriograph for the determination of pressure-diameter relationships under passive and active conditions in the range 5-200mmHg transmural pressure. Arterial geometrical measurements were made under relaxed conditions at 100mmHg. Media thickness/lumen diameter (M/L) ratios were significantly increased in SHR femoral (5.00±0.44% compared with 3.63±0.34%; P<0.05) and mesenteric (4.40±0.29% compared with 2.62±0.23%; P<0.001) arteries compared with those from WKY rats. Maximum myogenic contractions, assessed as minimum normalized diameters, were not significantly different in SHR and WKY rat femoral (0.41±0.03 and 0.40±0.02 respectively) or mesenteric (0.56±0.02 and 0.63±0.03 respectively) arteries. Arterial mechanical analyses demonstrated that incremental elastic modulus is reduced in SHR mesenteric arteries, but is not significantly different in SHR femoral arteries, compared with those from WKY rats. Additionally, wall stress at estimated in vivo pressures under passive and active conditions are similar in SHR and WKY rat arteries. These data demonstrate that increased M/L ratios in resistance arteries from SHRs are not associated with increased maximum pressure-dependent contractile responses. Increased M/L ratios in resistance arteries from SHRs are not accounted for by increased vessel wall stiffness, but the hypertension-associated arterial geometrical abnormalities act to normalize wall stress in the face of increased arterial pressure.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3