Characterization of a novel pterin intermediate formed in the catalytic cycle of tyrosine hydroxylase

Author:

ALMÅS Bjørg1,HAAVIK Jan1,FLATMARK Torgeir1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Bergen, N-5009 Bergen, Norway

Abstract

A novel pterin intermediate, in addition to the expected 4a-hydroxytetrahydrobiopterin (4a-OH-BH4) and quinonoid dihydrobiopterin, was generated during catalytic turnover of tyrosine hydroxylase (TH) with tetrahydrobiopterin as the cofactor. Based on chromatographic, spectroscopic and stability properties its structure is proposed to be similar to the product formed by the non-enzymic conversion of synthetic 4a-OH-BH4 [Bailey, Rebrin, Boerth and Ayling (1995) J. Am. Chem. Soc. 117, 10203–10211]. This compound was tentatively described as a 4a-adduct of a side-chain hydroxy group, i.e. the O2´,4a-cyclic-tetrahydrobiopterin (4a-Cyc-BH4). The intermediate generated in the TH reaction has a UV spectrum which is similar to that of 4a-OH-BH4, but elutes with a longer retention time (tR = 1.69 min compared with 1.06 min) on reversed-phase chromatography. Its conversion into quinonoid dihydrobiopterin is catalysed by pterin-4a-carbinolamine dehydratase (EC 4.2.1.96), although 4a-OH-BH4 is the preferred substrate for that enzyme. A precursor-product relationship was demonstrated between 4a-OH-BH4 and the putative 4a-Cyc-BH4 intermediate. The apparent stability of this compound is dependent on pH as well as on the nature of the buffer ions. At pH 8.0 a large amount was generated in Hepes and Tris, but little in phosphate buffer. At pH 7.0 in Hepes (standard assay conditions) and Tris buffer the putative 4a-Cyc-BH4, but no 4a-OH-BH4, was observed. None of the intermediates was observed at pH 6.0. The accumulation of these intermediates in the absence of dehydratase has important implications for the assay of TH and phenylalanine hydroxylase activities, and is also compatible with a possible physiological role of the dehydratase in the synthesis of catecholamines in vivo.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3