Frataxin, a molecule of mystery: trading stability for function in its iron-binding site

Author:

Lane Darius J. R.1,Richardson Des R.2

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, 3800, Australia

2. Department of Pathology and Bosch Institute, Iron Metabolism and Chelation Program, Blackburn Building, University of Sydney, Sydney, New South Wales, 2006, Australia

Abstract

What are the structural implications for iron binding by frataxin, the mitochondrial protein whose decreased expression results in Friedreich's ataxia? Though frataxin has been shown to be essential for proper handling of iron within mitochondria (e.g. for iron–sulfur cluster and haem biosynthesis), its exact molecular function remains unclear. In this issue of the Biochemical Journal, Correia and colleagues investigate the relationship between structure and function at the putative iron-binding site of Yfh1 (yeast frataxin). Using a host of Yfh1 combination point mutants, the authors observe that the presence of a semi-conserved pocket of negative charge within the ‘acidic ridge’ region (thought to be responsible for iron binding) only mildly enhances Yfh1's ability to bind iron, though it does significantly increase the protein's structural flexibility. The general emerging view is that frataxin's keystone role in mitochondrial iron metabolism depends on iron binding. This appears to have downstream effects on protein–protein interactions that are crucial for frataxin function. The current results reveal a somewhat delicate relationship between iron binding and structural plasticity that may help unravel the enigma of frataxin's metabolic roles.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3