Affiliation:
1. Department of Botany, University of Alberta, Edmonton 7, Alberta, Canada
Abstract
1. The concentrations of folate derivatives in aerobic cultures of Saccharomyces cerevisiae (A.T.C.C. 9763) were determined by microbiological assay employing Lactobacillus casei (A.T.C.C. 7469) and Pediococcus cerevisiae (A.T.C.C. 8081). Cells cultured in media lacking l-methionine contained higher concentrations of folate derivatives than cells grown in the same media supplemented with 2.5μmol of l-methionine/ml. The concentrations of highly conjugated derivatives were also decreased by supplementing the growth medium with l-methionine. 2. DEAE-cellulose column chromatography of extracts prepared from cells grown under these conditions revealed that the concentrations of methylated tetrahydrofolates were drastically decreased by the methionine supplement. Smaller decreases were also observed in the concentrations of formylated and unsubstituted derivatives. 3. The concentrations of four enzymes of C1 metabolism were compared after 6h of growth in the presence and in the absence of l-methionine (2.5μmol/ml). The specific activities of formyltetrahydrofolate synthetase, methylenetetrahydrofolate reductase and serine hydroxymethyltransferase were not altered by this treatment but that of 5-methyltetrahydrofolate–homocysteine methyltransferase was decreased by approx. 65% when l-methionine was supplied. The activities of 5-methyltetrahydrofolate–homocysteine methyltransferase, serine hydroxymethyltransferase and formyltetrahydrofolate synthetase were not appreciably altered by l-methionine in vitro. In contrast this amino acid was found to inhibit the activity of methylenetetrahydrofolate reductase. 4. Feeding experiments employing sodium [14C]formate indicated that cells grown in the presence of exogenous methionine, although having less ability to convert formate into methionine, readily incorporated 14C into serine and the adenosyl moiety of S-adenosylmethionine. 5. It is suggested that exogenous l-methionine controls C1 metabolism in Saccharomyces principally by regulation of methyl-group biogenesis within the folate pool.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献