Regulation of C1 metabolism by l-methionine in Saccharomyces cerevisiae

Author:

Lor K. L.1,Cossins E. A.1

Affiliation:

1. Department of Botany, University of Alberta, Edmonton 7, Alberta, Canada

Abstract

1. The concentrations of folate derivatives in aerobic cultures of Saccharomyces cerevisiae (A.T.C.C. 9763) were determined by microbiological assay employing Lactobacillus casei (A.T.C.C. 7469) and Pediococcus cerevisiae (A.T.C.C. 8081). Cells cultured in media lacking l-methionine contained higher concentrations of folate derivatives than cells grown in the same media supplemented with 2.5μmol of l-methionine/ml. The concentrations of highly conjugated derivatives were also decreased by supplementing the growth medium with l-methionine. 2. DEAE-cellulose column chromatography of extracts prepared from cells grown under these conditions revealed that the concentrations of methylated tetrahydrofolates were drastically decreased by the methionine supplement. Smaller decreases were also observed in the concentrations of formylated and unsubstituted derivatives. 3. The concentrations of four enzymes of C1 metabolism were compared after 6h of growth in the presence and in the absence of l-methionine (2.5μmol/ml). The specific activities of formyltetrahydrofolate synthetase, methylenetetrahydrofolate reductase and serine hydroxymethyltransferase were not altered by this treatment but that of 5-methyltetrahydrofolate–homocysteine methyltransferase was decreased by approx. 65% when l-methionine was supplied. The activities of 5-methyltetrahydrofolate–homocysteine methyltransferase, serine hydroxymethyltransferase and formyltetrahydrofolate synthetase were not appreciably altered by l-methionine in vitro. In contrast this amino acid was found to inhibit the activity of methylenetetrahydrofolate reductase. 4. Feeding experiments employing sodium [14C]formate indicated that cells grown in the presence of exogenous methionine, although having less ability to convert formate into methionine, readily incorporated 14C into serine and the adenosyl moiety of S-adenosylmethionine. 5. It is suggested that exogenous l-methionine controls C1 metabolism in Saccharomyces principally by regulation of methyl-group biogenesis within the folate pool.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3