Differential role played by the MEK/ERK/EGR-1 pathway in orthopoxviruses vaccinia and cowpox biology

Author:

Silva Patrícia N. G.12,Soares Jamária A. P.12,Brasil Bruno S. A. F.12,Nogueira Sarah V.12,Andrade Anderson A.12,de Magalhães José C.12,Bonjardim Marisa B.3,Ferreira Paulo C. P.2,Kroon Erna G.2,Bruna-Romero Oscar4,Bonjardim Cláudio A.12

Affiliation:

1. Grupo de Transdução de Sinal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil

2. Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil

3. Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil

4. Laboratório de Agentes Recombinantes, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil

Abstract

Appropriation of signalling pathways facilitates poxvirus replication. Poxviruses, as do most viruses, try to modify the host cell environment to achieve favourable replication conditions. In the present study, we show that the early growth response 1 gene (egr-1) is one of the host cell factors intensely modulated by the orthopoxviruses VV (vaccinia virus) and CPV (cowpox virus). These viruses stimulated the generation of both egr-1 mRNA and its gene product, throughout their entire replication cycles, via the requirement of MEK [mitogen-activated protein kinase/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathway. We showed that, upon VV infection, EGR-1 translocates into the nucleus where it binds to the EBS (egr-1-binding site) positioned at the 5′ region of EGR-1-regulated genes. In spite of both viruses belonging to the same genus, several lines of evidence, however, revealed a remarkable contrast between them as far as the roles played by the MEK/ERK/EGR-1 pathway in their biological cycles are concerned. Hence (i) the knocking-down of egr-1 by siRNA (small interfering RNA) proved that this transcription factor is of critical relevance for VV biology, since a decrease of about one log cycle in virus yield was verified, along with a small virus plaque phenotype, whereas the gene silencing did not have a detrimental effect on either CPV multiplication or viral plaque size; (ii) while both pharmacological and genetic inhibition of MEK/ERK resulted in a significant decrease in VV yield, both approaches had no impact on CPV multiplication; and (iii) CPV DNA replication was unaffected by pharmacological inhibition of MEK/ERK, but phosphorylation of MEK/ERK was dependent on CPV DNA replication, contrasting with a significant VV DNA inhibition and VV DNA replication-independence to maintain ERK1/2 phosphorylation, observed under the same conditions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference52 articles.

1. Poxviridae viruses and their replication;Moss,1996

2. Smallpox: anything to declare?;Smith;Nat. Rev. Immunol.,2002

3. Use of chemokine receptors by poxviruses;Lalani;Science,1999

4. Poxviruses and immune evasion;Seet;Annu. Rev. Immunol.,2003

5. Vaccinia virus immune evasion;Smith;Immunol. Rev.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3