Oxidative stress and cancer: have we moved forward?

Author:

Halliwell Barry1

Affiliation:

1. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7 Level 2 Singapore 117597

Abstract

‘Reactive species’ (RS) of various types are formed in vivo and many are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the ‘normal’ rates of RS generation may account for the increased risk of cancer development in the aged. Indeed, knockout of various antioxidant defence enzymes raises oxidative damage levels and promotes age-related cancer development in animals. In explaining this, most attention has been paid to direct oxidative damage to DNA by certain RS, such as hydroxyl radical (OH•). However, increased levels of DNA base oxidation products such as 8OHdg (8-hydroxy-2′-deoxyguanosine) do not always lead to malignancy, although malignant tumours often show increased levels of DNA base oxidation. Hence additional actions of RS must be important, possibly their effects on p53, cell proliferation, invasiveness and metastasis. Chronic inflammation predisposes to malignancy, but the role of RS in this is likely to be complex because RS can sometimes act as anti-inflammatory agents.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3