Cleavage preference distinguishes the two-component NS2B–NS3 serine proteinases of Dengue and West Nile viruses

Author:

Shiryaev Sergey A.1,Kozlov Igor A.2,Ratnikov Boris I.1,Smith Jeffrey W.1,Lebl Michal2,Strongin Alex Y.1

Affiliation:

1. Burnham Institute for Medical Research, La Jolla, CA 92037, U.S.A.

2. Illumina Inc, San Diego, CA 92121, U.S.A.

Abstract

Regulated proteolysis of the polyprotein precursor by the NS2B–NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B–NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B–NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4–P3–P2–P1–P1′–P2′–P3′–P4′–Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R↓GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1′ or the P2′ site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3