Affiliation:
1. Department of Pharmacology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K.
Abstract
1. The hypoglycaemic compound diphenyleneiodonium causes rapid and extensive swelling of rat liver mitochondria suspended in 150mm-NH4Cl, and in 150mm-KCl in the presence of 2,4-dinitrophenol and valinomycin. This indicates that diphenyleneiodonium catalyses a compulsory exchange of OH-for Cl-across the mitochondrial inner membrane. Br-and SCN-were the only other anions found whose exchange for OH-is catalysed by diphenyleneiodonium. 2. Diphenyleneiodonium inhibited state 3 respiration of mitochondria and slightly stimulated state 4 respiration with succinate or glutamate as substrate in a standard Cl--containing medium. 3. Diphenyleneiodonium did not inhibit state 3 respiration significantly in two Cl--free media (based on glycerol 2-phosphate or sucrose) but caused some stimulation of state 4. 4. In Cl--containing medium diphenyleneiodonium only slightly inhibited the 2,4-dinitrophenol-stimulated adenosine triphosphatase and it had little effect in the absence of Cl-. 5. The inhibition of respiration in the presence of Cl-is dependent on the Cl-–OH-exchange. 2,4-Dichlorodiphenyleneiodonium is ten times as active as diphenyleneiodonium both in causing swelling of mitochondria suspended in 150mm-NH4Cl and in inhibiting state 3 respiration in Cl--containing medium. Indirect evidence suggests that the Cl-–OH-exchange impairs the rate of uptake of substrate anions. 6. It is proposed that stimulation of state 4 respiration in the absence of Cl-depends, at least in part, on an electrogenic uptake of diphenyleneiodonium cations. 7. Tripropyl-lead acetate, methylmercuric iodide and nine substituted diphenyleneiodonium derivatives also catalyse Cl-–OH-exchange across the mitochondrial membrane. 8. Diphenyleneiodonium is compared with the trialkyltin compounds, which are also known to mediate Cl-–OH-exchange and which have in addition strong oligomycin-like effects on respiration. It is concluded that diphenyleneiodonium is specific for catalysing anion–OH-exchange and will be a useful reagent for investigating membrane-dependent systems.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献