Affiliation:
1. The Diabetes Research Laboratory, Winthrop University Hospital, 259 First St, Mineola, NY 11501, U.S.A., and the
2. School of Medicine, State University of New York at Stony Brook, NY 11794, U.S.A.
Abstract
Our recent studies indicate that insulin rapidly inactivates serine/threonine protein phosphatase-2A (PP-2A) by increasing tyrosine phosphorylation on the catalytic subunit. The exact mechanism of PP-2A inactivation by insulin in vivo is unclear. The Janus kinase (JAK) family of non-receptor protein tyrosine kinases constitute a novel type of signal-transduction pathway which is activated in response to a wide variety of polypeptide ligands, including insulin. In this study we investigated the potential role of JAK-2 in insulin-mediated tyrosine phosphorylation and inactivation of PP-2A using the rat skeletal muscle cell line L6. Co-immunoprecipitation studies revealed that PP-2A is associated with JAK-2 in the basal state. Insulin treatment did not alter JAK-2 association with PP-2A, but did increase JAK-2-mediated tyrosine phosphorylation of the PP-2A catalytic subunit and therefore inhibited PP-2A enzymic activity. Furthermore, PP-2A is associated with phosphoinositide 3-kinase (PI-3K) in the basal state and insulin treatment increases the catalytic activity of PI-3K bound to PP-2A. Pretreatment with AG-490, a specific JAK-2 inhibitor, and SpcAMP, a cAMP agonist, prevented the insulin-mediated increase in (i) JAK-2 kinase activity, (ii) PP-2A tyrosine phosphorylation, (iii) PP-2A inactivation and restored the enzyme activity to control levels, and (iv) PP-2A and JAK-2-associated PI-3K activity. These observations, together with the fact that insulin rapidly activates JAK-2 in L6 cells, and that this is accompanied by an increase in tyrosine phosphorylation of PP-2A in JAK-2 immunoprecipitates, suggest that insulin controls the activation status of PP-2A by tyrosine phosphorylation via JAK-2. PP-2A inactivation may result in an amplification of insulin-generated signals at the level of PI-3K.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献