Metabolism of inositol bis-, tris-, tetrakis- and pentakis-phosphates in GH3 cells

Author:

Dean N M1,Moyer J D1

Affiliation:

1. Laboratory of Biological Chemistry, Division of Cancer Treatment, National Cancer Institute, Building 37, Room 5D02, Bethesda, MD 20892, U.S.A.

Abstract

Previous studies demonstrated a multiplicity of isomers of inositol phosphates in GH3 rat pituitary tumour cells. In order to determine their origin, we have investigated the metabolism of radiolabelled inositol phosphates (IPn) in GH3 cell homogenates by using h.p.l.c. I(1,4,5)P3 is either phosphorylated to I(1,3,4,5)P4 (in the presence of ATP) or dephosphorylated to I(1,4)P2 (in the absence of ATP). I(1,4)P2 is dephosphorylated to I(4)P (greater than 95%). I(1,3,4,5)P4 hydrolysis yields two products. By using dual-labelled [32P, 3H]I(1,3,4,5)P4 with 32P in either the 3 or the 4/5 position, we have identified the probable configuration of these isomers. The predominant (greater than 97%) IP3 formed is I(1,3,4)P3, with a minor I(1,4,5)P3 peak. Subsequent I(1,3,4)P3 hydrolysis yields two IP2 isomers [the major (approximately equal to 85%) is I(3,4)P2; the minor (approximately equal to 15%) is I(1,3)P2] and two IP isomers (the major (approximately equal to 90%) is I(3)P [L-I(1)P], the minor I(4)P). IP5 is very slowly dephosphorylated to and IP4 of undetermined isomeric configuration. We have also examined GH3 cell lipids for the presence of phosphoinositides either more highly phosphorylated than PIP2 (as potential sources of the IP4/IP5 and IP6 in these cells) or phosphorylated in positions other than 1, 4 and 5, and have been unable to find evidence of either. These data suggest two main routes of metabolism for I(1,4,5)P3 in GH3 cells: either (1) phosphorylation to I(1,3,4,5)P4, and the subsequent consecutive dephosphorylation to I(1,3,4)P3, I(3,4)P2 and finally L-I(1)P [D-I(3)P]; or (2) dephosphorylation to I(1,4)P2 and, subsequently, I(4)P.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3