Direct detection of a globin-derived radical in leghaemoglobin treated with peroxides

Author:

Davies M J1,Puppo A2

Affiliation:

1. Department of Chemistry, University of York, York, YO1 5DD, U.K.

2. Laboratoire de Biologie Végétale et Microbiologie, CNRS URA 1114, Université de Nice-Sophia Antipolis, 06034 Nice Cédex, France

Abstract

The root nodules of leguminous plants contain an oxygen-carrying protein which is somewhat similar to myoglobin. Reaction of the Fe3+ form of this protein (metleghaemoglobin; MetLb) with H2O2 is known to generate a ferryl [iron(IV)-oxo] species. This intermediate, which is analogous to Compound II of peroxidases and ferryl myoglobin, is one oxidizing equivalent above the initial level. In the present study it is shown that the second oxidizing equivalent from the peroxide is rapidly transferred into the surrounding protein, generating a protein radical which has been detected by e.p.r. spectroscopy; this reaction is analogous to that observed with metmyoglobin. An identical protein-derived species is observed with all three forms of MetLb tested (a, c1, c3) and with a number of other hydroperoxides and two-electron oxidants. This latter result, the observation that the concentration of this species is not affected by certain hydroxyl-radical scavengers, and the loss of the radical when the oxy or deoxy forms are used, demonstrate that this species is formed by electron transfer within the protein rather than by the generation and subsequent reaction of hydroxyl radicals (and related species from the other hydroperoxides). The e.p.r. signal of this species, which decays rapidly with a half-life of approx. 40 s, is consistent with the formation of a sterically constrained tyrosine-derived phenoxyl radical; protein-iodination experiments lend support to this assignment. Reaction between the radical and a number of other compounds has been observed, demonstrating that it is at least partially exposed on the surface of the protein. Analysis of the protein structure suggest that the radical may be centred on a tyrosine residue present at position 132 in the protein; this residue is close to the haem prosthetic group, which would facilitate rapid electron transfer.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3