Numerical investigation of the haemodynamics in the human fetal umbilical vein/ductus venosus based on the experimental data

Author:

Rezaee Taraneh1,Hassani Kamran1

Affiliation:

1. Department of Biomechanics, Science and Research Branch, Islamic Azad University, Tehran, 4515/775, Iran

Abstract

Abortion of the fetus due to a disease, in an early stage of pregnancy, has been dramatically increased in the last decades. There is a still lack of knowledge on the various types of diseases which lead fetus to a vulnerable circumstance. The transport of oxygenated blood from the placenta to the human fetus has been an important clinical feature in Doppler velocimetry studies, especially the ductus venosus (DV). The DV connects intra-abdominal portion of the umbilical vein and the inferior vena cava (IVC) at the inlet of the right atrium and is, therefore, important when examining the fetus state of health. An abnormal flow in the DV can indicate a fetal disease such as, chromosomal abnormalities, cardiac defect, hypoxaemia and intrauterine growth restriction (IUGR). The blood flow in the fetal circulation has not been investigated much in detail. The blood flow in the fetal circulation provides necessary information for physician to make a suitable decision on abortion or alternative medical practice before or even after birth. The present study performed a comparative study to quantify the blood velocity in DV by a combination approach based on 3D computational simulation and Doppler measurement. The results showed that the velocity value in DV is significant and can be considered as an indicator of any kind of disease in fetal. The nodal displacement of the model was also analysed. It shows that DV tolerates a higher level of displacement compared with the other regions of the model, whereas the nodal pressure shows different results as the lowest values are located in DV.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Extra-abdominal Vein Varix on the Stress Distribution in Umbilical Cord: A Simulation Study;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

2. PARAMETRIC STUDY IN FETAL UMBILICAL VEIN BASED ON HEMODYNAMICS;Biomedical Engineering: Applications, Basis and Communications;2022-02

3. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease;Disease Models & Mechanisms;2021-03-01

4. The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression;Journal of the Mechanical Behavior of Biomedical Materials;2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3