The first EGF domain of coagulation factor IX attenuates cell adhesion and induces apoptosis

Author:

Ishikawa Tomomi1,Kitano Hisataka2,Mamiya Atsushi2,Kokubun Shinichiro1,Hidai Chiaki1

Affiliation:

1. Division of Physiology, Department of Biomedical Science, School of Medicine, Nihon University, 30-1, Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan

2. Division of Dental Surgery, School of Medicine, Nihon University, 30-1, Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan

Abstract

Coagulation factor IX (FIX) is an essential plasma protein for blood coagulation. The first epidermal growth factor (EGF) motif of FIX (EGF-F9) has been reported to attenuate cell adhesion to the extracellular matrix (ECM). The purpose of the present study was to determine the effects of this motif on cell adhesion and apoptosis. Treatment with a recombinant EGF-F9 attenuated cell adhesion to the ECM within 10 min. De-adhesion assays with native FIX recombinant FIX deletion mutant proteins suggested that the de-adhesion activity of EGF-F9 requires the same process of FIX activation as that which occurs for coagulation activity. The recombinant EGF-F9 increased lactate dehydrogenase (LDH) activity release into the medium and increased the number of cells stained with annexin V and activated caspase-3, by 8.8- and 2.7-fold respectively, indicating that EGF-F9 induced apoptosis. Activated caspase-3 increased very rapidly after only 5 min of administration of recombinant EGF-F9. Treatment with EGF-F9 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), but not that of phosphorylated MAPK 44/42 or c-Jun N-terminal kinase (JNK). Inhibitors of caspase-3 suppressed the release of LDH. Caspase-3 inhibitors also suppressed the attenuation of cell adhesion and phosphorylation of p38 MAPK by EGF-F9. Our data indicated that EGF-F9 activated signals for apoptosis and induced de-adhesion in a caspase-3 dependent manner.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3