Protein structure and gene cloning of Syncephalastrum racemosum nuclease

Author:

HO Heng-Chien1,LIAO Ta-Hsiu2

Affiliation:

1. Department of Biochemistry, China Medical College, 91 Hsueh-Shih Road, Taichung, Taiwan

2. Institute of Biochemistry, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan

Abstract

The complete amino acid sequence of the fungus Syncephalastrum racemosum (Sr-) nuclease has been delineated on the basis of protein sequencing of the intact protein and its protease-digested peptides. The resulting 250-residue sequence shows a carbohydrate side chain attached at Asn134 and two half-cystine residues (Cys242 and Cys247) cross-linked to form a small disulphide loop. On the basis of the sequence of Sr-nuclease, a computer search in the sequence database yielded 60% and 48% positional identities with the sequences of Cunninghamella echinulata nuclease C1 and yeast mitochondria nuclease respectively, and very little similarity to those of several known mammalian DNases I. Sequence alignment of the three similar nucleases reveals that the single small disulphide loop is unchanged but the carbohydrate attachment in Sr-nuclease is absent from the other two nucleases. Alignment also shows a highly conserved region harbouring Sr-nuclease His85, which is assigned as one of the essential residues in the active site. The cDNA encoding Sr-nuclease was amplified by using reverse transcriptase-mediated PCR with degenerate primers based on its amino acid sequence. Subsequently, specific primers were synthesized for use in the 3´ and 5´ rapid amplification of cDNA ends (RACE). Direct sequencing of the RACE products led to the deduction of a 1.1 kb cDNA sequence for Sr-nuclease. The cDNA contains an open reading frame of 320 amino acid residues including a 70-residue putative signal peptide and the 250-residue mature protein. Finally, the recombinant Sr-nuclease was expressed in Escherichia coli strain BL21(DE3) in which the recombinant protein, after solubilization with detergent and renaturation, showed both DNase and RNase activities. The assignment of His85 to the active site was further supported by evidence that the mutant protein Sr-nuclease (H85A), in which His85 was replaced by Ala, was not able to degrade DNA or RNA.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3