The curious case of IDH mutant acute myeloid leukaemia: biochemistry and therapeutic approaches

Author:

Gruber Emily1,Kats Lev M.1ORCID

Affiliation:

1. Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia

Abstract

Of the many genetic alterations that occur in cancer, relatively few have proven to be suitable for the development of targeted therapies. Mutations in isocitrate dehydrogenase (IDH) 1 and -2 increase the capacity of cancer cells to produce a normally scarce metabolite, D-2-hydroxyglutarate (2-HG), by several orders of magnitude. The discovery of the unusual biochemistry of IDH mutations spurred a flurry of activity that revealed 2-HG as an ‘oncometabolite’ with pleiotropic effects in malignant cells and consequences for anti-tumour immunity. Over the next decade, we learned that 2-HG dysregulates a wide array of molecular pathways, among them a large family of dioxygenases that utilise the closely related metabolite α-ketoglutarate (α-KG) as an essential co-substrate. 2-HG not only contributes to malignant transformation, but some cancer cells become addicted to it and sensitive to inhibitors that block its synthesis. Moreover, high 2-HG levels and loss of wild-type IDH1 or IDH2 activity gives rise to synthetic lethal vulnerabilities. Herein, we review the biology of IDH mutations with a particular focus on acute myeloid leukaemia (AML), an aggressive disease where selective targeting of IDH-mutant cells is showing significant promise.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3