Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+ mobilization in permeabilized hepatocytes

Author:

Hajnóczky G1,Gao E1,Nomura T1,Hoek J B1,Thomas A P1

Affiliation:

1. Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A.

Abstract

The mobilization of Ca2+ from intracellular stores by Ins(1,4,5)P3 in suspensions of permeabilized rat hepatocytes was potentiated by preincubating intact cells with adenosine 3′:5′-cyclic phosphorothioate (cpt-cAMP), or by addition of the catalytic subunit of cyclic-AMP-dependent protein kinase (PKA) after cell permeabilization. This action of PKA involved both an enhancement in Ins(1,4,5)P3 sensitivity and an increase in the size of the Ins(1,4,5)P3-releasable Ca2+ pool. Inclusion of the protein phosphatase inhibitor okadaic acid in the permeabilization medium augmented the effects of PKA. Treatment with PKA catalytic subunit also increased the rate of ATP-dependent Ca2+ sequestration. To determine whether the effects of PKA on the Ca(2+)-release mechanism were secondary to alterations in the Ca2+ load of the Ins(1,4,5)P3-sensitive stores, a method was developed using Mn2+ as a Ca2+ surrogate to examine the permeability properties of the Ins(1,4,5)P3-gated channels independent of Ca2+ fluxes. This approach utilized the ability of Mn2+ to quench the fluorescence of fura-2 compartmentalized within intracellular Ca2+ stores in an Ins(1,4,5)P3-dependent manner, with thapsigargin added to block the ATP-activated Ca2+ pump and to ensure that the Ca2+ stores were fully depleted of Ca2+. The initial rate and extent of Mn2+ quenching of compartmentalized fura-2 was increased in a dose-dependent manner by Ins(1,4,5)P3. PKA activation increased both the initial rate and the extent of Mn2+ quenching at sub-maximal Ins(1,4,5)P3 doses, but there was no effect on the quench rate in the presence of saturating Ins(1,4,5)P3. However, the amount of compartmentalized fura-2 that could be quenched by Mn2+ in the presence of maximal Ins(1,4,5)P3 was increased by PKA. These data suggest two distinct actions of PKA on the Ins(1,4,5)P3-sensitive Ca2+ stores. (1) Modification of the ion-permeability properties of the Ins(1,4,5)P3 receptor/channel through an increase in the sensitivity to Ins(1,4,5)P3 for channel opening. (2) A recruitment of Ca2+ stores from the Ins(1,4,5)P3-insensitive pool. Both actions were independent of the Ca(2+)-loading state of the stores. Imaging studies of single permeabilized hepatocytes showed that the Ins(1,4,5)P3-sensitive stores were distributed throughout the cell and PKA enhanced the rate of Ins(1,4,5)P3-stimulated Mn2+ quench in individual cells, without modifying the subcellular distribution of Ins(1,4,5)P3-sensitive stores.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3