Nutrients differentially regulate multiple translation factors and their control by insulin

Author:

CAMPBELL Linda E.1,WANG Xuemin1,PROUD Christopher G.1

Affiliation:

1. Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Dundee DD1 5EH, Scotland, U.K.

Abstract

Eukaryotic initiation factor eIF2B and eukaryotic elongation factor eEF2 each mediate regulatory steps important for the overall regulation of mRNA translation in mammalian cells and are activated by insulin. Here, we demonstrate that their activation by insulin requires the presence, in the medium in which the cells are maintained, of both amino acids and glucose: insulin only induced activation of eIF2B and the dephosphorylation of eEF2 when cells were exposed to both types of nutrient. Other translational regulators, e.g. the 70 kDa ribosomal protein S6 kinase (p70 S6 kinase) and the eIF4E binding protein 1, 4E-BP1, are also regulated by insulin but their control does not require glucose, only amino acids. The effects of nutrients on the activation of eIF2B do not reflect changes in the phosphorylation of eIF2 (and, by inference, operation of a kinase analogous to yeast Gcn2p), or a requirement for nutrients for inactivation of glycogen synthase kinase-3 or dephosphorylation of eIF2B. Nutrients did not affect the ability of insulin to activate protein kinase B. These data show that activation by insulin of p70 S6 kinase, which modulates the translation of specific mRNAs, depends on the availability of amino acids whereas regulation of factors involved in overall activation of translation (eIF2B, eEF2) requires both amino acids and glucose. These results add substantially to the emerging evidence that nutrients themselves modulate functions of mammalian cells and indicate that (i) nutrients modulate the activation of eIF2B and eEF2 through as-yet unidentified mechanisms and (ii) regulation of p70 S6 kinase and 4E-BP1 by insulin requires other inputs in addition to protein kinase B.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3