Nuclear magnetic resonance relaxation studies of the interaction of ligands with the monomer and tetramer forms of formyltetrahydrofolate synthetase

Author:

Yeh C H1,Hanna D A1,Everett G W1,Himes R H1

Affiliation:

1. Department of Biochemistry, University of Kansas, Lawrence 66045.

Abstract

Previous work using n.m.r. spectroscopy to investigate the binding between formyltetrahydrofolate synthetase and its ligands was done using the catalytically active tetrameric form of the enzyme. By removal of specific monovalent cations the tetramer dissociates to four identical, catalytically inactive monomers, which are capable of binding nucleotides with affinities similar to those obtained with the tetramer. In the studies reported here, we examined the interaction of metal-nucleotide, formate and monovalent cations with the monomer using n.m.r. relaxation measurements. We were able to demonstrate that formate binds to the monomer. The spin-lattice relaxation rate (1/T1) of the formate carbon in the monomer. M2+.ADP. formate complex is enhanced when Mg2+ is replaced by Mn2+. By assuming that the exchange of formate is not rate-limiting and that tau c of the monomer is the same as that of the tetramer, the distance between the Mn2+ and the formate carbon was calculated and found to be similar in the monomer and tetramer complexes. The spin-lattice relaxation rates of [13C]trimethylammonium ion (an inactive monovalent cation), [13C]methylammonium and [15N]ammonium ions (both active monovalent cations), were measured in the presence of tetramer, MnADP and formate. The relaxation rates of methylammonium and ammonium ions were enhanced under these conditions whereas the relaxation rate of trimethylammonium ion was not. The results indicate that the active monovalent cations bind near the MnADP binding site. A distance from the Mn2+ to the ammonium nitrogen of between 0.5 and 0.6 nm was calculated.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3