Progesterone and the zona pellucida activate different transducing pathways in the sequence of events leading to diacylglycerol generation during mouse sperm acrosomal exocytosis

Author:

MURASE Tetsuma1,ROLDAN Eduardo R. S.1

Affiliation:

1. Department of Development and Signalling, The Babraham Institute, Cambridge CB2 4AT, U.K., and Departamento de Reproducción Animal, Centro de Investigación y Tecnología, INIA, Ctra. de La Coruña km 5.9, 28040-Madrid, Spain

Abstract

We tested the involvement of protein tyrosine kinase and G-protein transducing pathways in the formation of diacylglycerol (DAG) during exocytosis in mouse spermatozoa. In capacitated spermatozoa, stimulation with solubilized zona pellucida (ZP) or progesterone led to the formation of DAG and to exocytosis of the acrosomal granule. Stimulation of DAG formation and exocytosis by ZP were inhibited in a concentration-dependent fashion by pre-exposure to tyrphostin A48, a protein tyrosine kinase inhibitor. These ZP-induced responses were also reduced in a concentration-dependent manner by prior incubation with pertussis toxin, a G-protein (Gi class) inhibitor. On the other hand, generation of DAG and exocytosis triggered by progesterone were inhibited if spermatozoa were preincubated with different concentrations of tyrphostin A48, but were not affected by pre-exposure to pertussis toxin. Progesterone acts on at least two novel surface receptors, one being a γ-aminobutyric acid (GABA) type A (GABAA)-like receptor. Transducing mechanisms coupled to this receptor were tested directly by stimulating spermatozoa with GABA. Treatment of capacitated spermatozoa with GABA resulted in DAG formation and exocytosis. These responses were not seen when cells were preincubated with tyrphostin A48. Pertussis toxin, however, did not affect the generation of DAG and exocytosis triggered by GABA, in agreement with results obtained using progesterone. Taken together, these results indicate that DAG formation during acrosomal exocytosis is differentially regulated by transducing pathways activated by oocyte-associated agonists.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3