Annexins sense changes in intracellular pH during hypoxia

Author:

Monastyrskaya Katia1,Tschumi Fabian1,Babiychuk Eduard B.1,Stroka Deborah2,Draeger Annette1

Affiliation:

1. Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland

2. Department of Clinical Research, Medical Faculty, University of Bern, 3010 Bern, Switzerland

Abstract

The pHi (intracellular pH) is an important physiological parameter which is altered during hypoxia and ischaemia, pathological conditions accompanied by a dramatic decrease in pHi. Sensors of pHi include ion transport systems which control intracellular Ca2+ gradients and link changes in pHi to functions as diverse as proliferation and apoptosis. The annexins are a protein family characterized by Ca2+-dependent interactions with cellular membranes. Additionally, in vitro evidence points to the existence of pH-dependent, Ca2+-independent membrane association of several annexins. We show that hypoxia promotes the interaction of the recombinant annexin A2–S100A10 (p11) and annexin A6 with the plasma membrane. We have investigated in vivo the influence of the pHi on the membrane association of human annexins A1, A2, A4, A5 and A6 tagged with fluorescent proteins, and characterized this interaction for endogenous annexins present in smooth muscle and HEK (human embryonic kidney)-293 cells biochemically and by immunofluorescence microscopy. Our results show that annexin A6 and the heterotetramer A2–S100A10 (but not annexins A1, A4 and A5) interact independently of Ca2+ with the plasma membrane at pH 6.2 and 6.6. The dimerization of annexin A2 within the annexin A2–S100A10 complex is essential for the pH-dependent membrane interaction at this pH range. The pH-induced membrane binding of annexins A6 and A2–S100A10 might have consequences for their functions as membrane organizers and channel modulators.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3