Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex

Author:

Mendoza Heidi1,Campbell David G.1,Burness Kerry2,Hastie James2,Ronkina Natalia3,Shim Jae-Hyuck4,Arthur J. Simon C.1,Davis Roger J.5,Gaestel Matthias3,Johnson Gary L.6,Ghosh Sankar4,Cohen Philip12

Affiliation:

1. MRC Protein Phosphorylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, U.K.

2. Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K.

3. Medical School Hannover, Institute of Biochemistry, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany

4. Department of Biophysics and Biochemistry, S625A, The Anlyan Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, U.S.A.

5. University of Massachusetts Medical School, 373 Plantation Street, Suite 309, Worcester, MA 01605, U.S.A.

6. Department of Pharmacology, University of North Carolina School of Medicine, 1108 MEJ Building, Campus Box 7365, Chapel Hill, NC 27599-7365, U.S.A.

Abstract

The protein kinase TAK1 (transforming growth factor-β-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38α MAPK down-regulates TAK1 and showed that p38α MAPK phosphorylates TAB1 at Ser423 and Thr431. In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser372 and Ser524) and three on TAB3 (Ser60, Thr404 and Ser506) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser372 and Ser524 of TAB2 are not phosphorylated by pathways dependent on p38α/β MAPKs, ERK1/2 (extracellular-signal-regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser60 and Thr404 of TAB3 appear to be phosphorylated directly by p38α MAPK, whereas Ser506 is phosphorylated by MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38α MAPK. Studies using TAB1−/− MEFs indicate important roles for TAB1 in recruiting p38α MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser60 and Thr404 and in inhibiting the dephosphorylation of TAB3 at Ser506. TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNFα was able to stimulate detectable TAK1 activity in TAB1−/− MEFs. Surprisingly, the IL-1 and TNFα-stimulated activation of MAPK cascades and IκB (inhibitor of nuclear factor κB) kinases were similar in TAB1−/−, MEKK3−/− [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNFα-induced activation of these signalling pathways in TAB1−/− and MEKK3−/− MEFs.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference44 articles.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3