Glypican-3 is a binding protein on the HepG2 cell surface for tissue factor pathway inhibitor

Author:

MAST E. Alan1,HIGUCHI A. Darryl2,HUANG Zhong-Fu2,WARSHAWSKY Ilka3,SCHWARTZ L. Alan3,BROZE George J.21

Affiliation:

1. Division of Laboratory Medicine Washington University School of Medicine, 216 South Kingshighway Blvd., St. Louis, MO 63110, U.S.A.

2. Division of Hematology/Oncology, Washington University School of Medicine, 216 South Kingshighway Blvd., St. Louis, MO 63110, U.S.A.

3. Edward Mallinckrodt Departments of Pediatrics, Molecular Biology and Pharmacology, Washington University School of Medicine, 216 South Kingshighway Blvd., St. Louis, MO 63110, U.S.A.

Abstract

Tissue factor pathway inhibitor (TFPI) is a primary regulator of the initiation of blood coagulation. TFPI is internalized and degraded by HepG2 cells through the low-density-lipoprotein receptor-related protein (LRP) but also binds another molecule present on the cell surface at approx. 10-fold the abundance of LRP [Warshawsky, Broze and Schwartz (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 6664-6668]. When HepG2 cells are washed with heparin or dextran sulphate, a substance that binds TFPI is removed from the cell surface and can be detected in a slot-blot assay. Preincubation with trypsin destroys the reactivity of the TFPI-binding component in the slot-blot assay, suggesting that it is a protein. In addition, when the sulphation of glycosaminoglycans (GAGs) is prevented by growing the HepG2 cells in the presence of 30 mM sodium chlorate, TFPI binding is unaffected, whereas the binding of bovine lipoprotein lipase, a protein known to associate with cell-surface GAGs, falls to 50% of control levels. Dextran sulphate washes of HepG2 cells grown in sodium chlorate have an equal reactivity in slot-blot experiments to that of non-treated cells, suggesting that GAGs are not totally responsible for the binding activity observed. By using the slot blot to follow binding activity and conventional protein purification techniques, a protein species that migrates at 40 kDa after reduction was identified in the HepG2 cell wash. The binding of this protein to TFPI was confirmed with immobilized TFPI. Amino acid sequence analysis identified this protein species as a proteolytic fragment of glypican-3 (also called OCI-5), a member of the glypican family of glycosylphosphatidylinositol-anchored proteoglycans.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3