Diagnostic Enzymology of a-L-Iduronidase with Special Reference to a Sulphated Disaccharide Derived from Heparin

Author:

Hopwood J. J.1,Muller Vivienne1

Affiliation:

1. Department of Chemical Pathology, The Adelaide Children's Hospital Inc., Adelaide, South Australia, Australia

Abstract

1. Iduronosyl anhydro[1-3H]mannitol 6-sulphate (IMs), iduronosyl anhydro[1-3H]mannitol, phenyl iduronide (PhI) and 4-methylumbelliferyl iduronide have been compared as substrates for the diagnostic estimation of α-l-iduronidase activity present in human leucocyte and cultured skin fibroblast homogenates. The pH profile of leucocyte and fibroblast iduronidase activity was dependent on substrate structure and concentration, the ionic strength and the nature of the buffer ion used in the assay mixture. 2. NaCl, KBr and Na2SO4 were shown to be parabolic competitive inhibitors of IMs activity, the K1 with fibroblast homogenates being 34, 13.4 and 0.22 mmol/l respectively. NaCl and KBr were shown to have a primary salt effect on the interaction between enzyme and substrate but Na2SO4 appeared to have a specific ion effect at a cationic binding site. 3. NaCl inhibited the hydrolysis of IMs at all pH values studied, whereas NaCl concentrations of 0.2 mol/l inhibited the hydrolysis of PhI at pH values below 3.8 but activated the enzyme at higher incubation pH values. 4. Cu2+ was shown to be a potent non-competitive inhibitor of IMs enzyme activity with an apparent Kl, of approximately 0.02 mmol/l. The enzyme activity was inhibited by Fe2+ (Kl 4 mmol/l), Hg2+ and Ag+, but has not significantly been affected by other univalent or bivalent cations. 5. The presence of solvent and salt effects on apparent Km but not the Vmax. suggest that the binding of IMs to the enzyme involved charge neutralization, and it is inferred that two cationic binding sites are present at the active site. It is postulated that one site specifically binds to the iduronic acid carboxyl group, the other to the 6-sulphate of the anhydromannitol moiety.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3