Biochemical properties of alcohol dehydrogenase from Drosophila lebanonensis

Author:

Winberg J O,Hovik R,McKinley-McKee J S,Juan E,Gonzalez-Duarte R

Abstract

Purified Drosophila lebanonensis alcohol dehydrogenase (Adh) revealed one enzymically active zone in starch gel electrophoresis at pH 8.5. This zone was located on the cathode side of the origin. Incubation of D. lebanonensis Adh with NAD+ and acetone altered the electrophoretic pattern to more anodal migrating zones. D. lebanonensis Adh has an Mr of 56,000, a subunit of Mr of 28 000 and is a dimer with two active sites per enzyme molecule. This agrees with a polypeptide chain of 247 residues. Metal analysis by plasma emission spectroscopy indicated that this insect alcohol dehydrogenase is not a metalloenzyme. In studies of the substrate specificity and stereospecificity, D. lebanonensis Adh was more active with secondary than with primary alcohols. Both alkyl groups in the secondary alcohols interacted hydrophobically with the alcohol binding region of the active site. The catalytic centre activity for propan-2-ol was 7.4 s-1 and the maximum velocity of most secondary alcohols was approximately the same and indicative of rate-limiting enzyme-coenzyme dissociation. For primary alcohols the maximum velocity varied and was much lower than for secondary alcohols. The catalytic centre activity for ethanol was 2.4 s-1. With [2H6]ethanol a primary kinetic 2H isotope effect of 2.8 indicated that the interconversion of the ternary complexes was rate-limiting. Pyrazole was an ethanol-competitive inhibitor of the enzyme. The difference spectra of the enzyme-NAD+-pyrazole complex gave an absorption peak at 305 nm with epsilon 305 14.5 × 10(3) M-1 × cm-1. Concentrations and amounts of active enzyme can thus be determined. A kinetic rate assay to determine the concentration of enzyme active sites is also presented. This has been developed from active site concentrations established by titration at 305 nm of the enzyme and pyrazole with NAD+. In contrast with the amino acid composition, which indicated that D. lebanonensis Adh and the D. melanogaster alleloenzymes were not closely related, the enzymological studies showed that their active sites were similar although differing markedly from those of zinc alcohol dehydrogenases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3