Re-examination of the roles of PEP and Mg2+ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of Zea mays

Author:

TOVAR-MÉNDEZ Alejandro1,RODRÍGUEZ-SOTRES Rogelio1,LÓPEZ-VALENTÍN Dulce M.1,MUÑOZ-CLARES Rosario A.1

Affiliation:

1. Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., 04510, México

Abstract

To study the effects of phosphoenolpyruvate (PEP) and Mg2+ on the activity of the non-phosphorylated and phosphorylated forms of phosphoenolpyruvate carboxylase (PEPC) from Zea maysleaves, steady-state measurements have been carried out with the free forms of PEP (fPEP) and Mg2+ (fMg2+), both in a near-physiological concentration range. At pH 7.3, in the absence of activators, the initial velocity data obtained with both forms of the enzyme are consistent with the exclusive binding of MgPEP to the active site and of fPEP to an activating allosteric site. At pH 8.3, and in the presence of saturating concentrations of glucose 6-phosphate (Glc6P) or Gly, the free species also combined with the active site in the free enzyme, but with dissociation constants at least 35-fold that estimated for MgPEP. The latter dissociation constant was lowered to the same extent by saturating Glc6P and Gly, to approx. one-tenth and one-sixteenth in the non-phosphorylated and phosphorylated enzymes respectively. When Glc6P is present, fPEP binds to the active site in the free enzyme better than fMg2+, whereas the metal ion binds better in the presence of Gly. Saturation of the enzyme with Glc6P abolished the activation by fPEP, consistent with a common binding site, whereas saturation with Gly increased the affinity of the allosteric site for fPEP. Under all the conditions tested, our results suggest that fPEP is not able to combine with the allosteric site in the free enzyme, i.e. it cannot combine until after MgPEP, fPEP or fMg2+ are bound at the active site. The physiological role of Mg2+ in the regulation of the enzyme is only that of a substrate, mainly as part of the MgPEP complex. The kinetic properties of maize leaf PEPC reported here are consistent with the enzyme being well below saturation under the physiological concentrations of fMg2+ and PEP, particularly during the dark period; it is therefore suggested that the basal PEPC activity in vivois very low, but highly responsive to even small changes in the intracellular concentration of its substrate and effectors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3