Affiliation:
1. Renal Pathophysiology Laboratory, Departments of Physiology, Biophysics and Internal Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, U.S.A.
Abstract
We investigated the dependence of nicotinate–adenine dinucleotide phosphate (NAADP)-induced Ca2+ release from intracellular stores of sea urchin egg homogenates, upon extravesicular Ca2+. In contrast to the Ca2+ release induced by inositol 1´,4´,5´trisphosphate (IP3) or cyclic ADP-ribose (cADPR), the Ca2+ release induced by NAADP was completely independent of the free extravesicular Ca2+ over a wide range of concentrations (0–0.1 mM). The Ca2+ release triggered by either cADPR or IP3 was biphasically modulated by extravesicular Ca2+, and the Ca2+ release by these agents was abolished when the extravesicular Ca2+ was removed by chelation with 2 mM EGTA. On the other hand, NAADP-triggered Ca2+ release was not influenced by EGTA. These data indicate that while both cADPR and IP3 systems behave as functional Ca2+-induced Ca2+ release mechanisms, NAADP activates a Ca2+ release mechanism which is independent of the presence of extravesicular Ca2+. Therefore, the NAADP-sensitive Ca2+ release mechanisms may have a unique regulatory impact upon intracellular Ca2+ homoeostasis.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献