Possible mechanisms involved in the down-regulation of translation during transient global ischaemia in the rat brain

Author:

MARTÍN de la VEGA Cristina1,BURDA Jozef2,NEMETHOVA Miroslava2,QUEVEDO Celia1,ALCÁZAR Alberto1,MARTÍN M. Elena1,DANIELISOVA Viera2,FANDO Juan L.3,SALINAS Matilde1

Affiliation:

1. Departamento de Investigación, Hospital Ramón y Cajal, Ctra. Colmenar Km. 9, 28034 Madrid, Spain

2. Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, Kosice, SK-04001, Slovak Republic

3. Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain

Abstract

The striking correlation between neuronal vulnerability and down-regulation of translation suggests that this cellular process plays a critical part in the cascade of pathogenetic events leading to ischaemic cell death. There is compelling evidence supporting the idea that inhibition of translation is exerted at the polypeptide chain initiation step, and the present study explores the possible mechanism/s implicated. Incomplete forebrain ischaemia (30min) was induced in rats by using the four-vessel occlusion model. Eukaryotic initiation factor (eIF)2, eIF4E and eIF4E-binding protein (4E-BP1) phosphorylation levels, eIF4F complex formation, as well as eIF2B and ribosomal protein S6 kinase (p70S6K) activities, were determined in different subcellular fractions from the cortex and the hippocampus [the CA1-subfield and the remaining hippocampus (RH)], at several post-ischaemic times. Increased phosphorylation of the α subunit of eIF2 (eIF2α) and eIF2B inhibition paralleled the inhibition of translation in the hippocampus, but they normalized to control values, including the CA1-subfield, after 4–6h of reperfusion. eIF4E and 4E-BP1 were significantly dephosphorylated during ischaemia and total eIF4E levels decreased during reperfusion both in the cortex and hippocampus, with values normalizing after 4h of reperfusion only in the cortex. Conversely, p70S6K activity, which was inhibited in both regions during ischaemia, recovered to control values earlier in the hippocampus than in the cortex. eIF4F complex formation diminished both in the cortex and the hippocampus during ischaemia and reperfusion, and it was lower in the CA1-subfield than in the RH, roughly paralleling the observed decrease in eIF4E and eIF4G levels. Our findings are consistent with a potential role for eIF4E, 4E-BP1 and eIF4G in the down-regulation of translation during ischaemia. eIF2α, eIF2B, eIF4G and p70S6K are positively implicated in the translational inhibition induced at early reperfusion, whereas eIF4F complex formation is likely to contribute to the persistent inhibition of translation observed at longer reperfusion times.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3