Radiation-induced cell death: importance of lysosomal destabilization

Author:

Persson H. Lennart12,Kurz Tino34,Eaton John W.35,Brunk Ulf T.3

Affiliation:

1. Division of Pulmonary Medicine, Faculty of Health Sciences, University of Linköping, SE-581 85 Linköping, Sweden

2. Division of Pathology II, Faculty of Health Sciences, University of Linköping, SE-581 85 Linköping, Sweden

3. Division of Pharmacology, Faculty of Health Sciences, University of Linköping, SE-581 85 Linköping, Sweden

4. Henry Wellcome Laboratory for Biogerontology Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE4 6BE, U.K.

5. James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, U.S.A.

Abstract

The mechanisms involved in radiation-induced cellular injury and death remain incompletely understood. In addition to the direct formation of highly reactive hydroxyl radicals (HO·) by radiolysis of water, oxidative stress events in the cytoplasm due to formation of H2O2 may also be important. Since the major pool of low-mass redox-active intracellular iron seems to reside within lysosomes, arising from the continuous intralysosomal autophagocytotic degradation of ferruginous materials, formation of H2O2 inside and outside these organelles may cause lysosomal labilization with release to the cytosol of lytic enzymes and low-mass iron. If of limited magnitude, such release may induce ‘reparative autophagocytosis’, causing additional accumulation of redox-active iron within the lysosomal compartment. We have used radio-resistant histiocytic lymphoma (J774) cells to assess the importance of intralysosomal iron and lysosomal rupture in radiation-induced cellular injury. We found that a 40 Gy radiation dose increased the ‘loose’ iron content of the (still viable) cells approx. 5-fold when assayed 24 h later. Cytochemical staining revealed that most redox-active iron was within the lysosomes. The increase of intralysosomal iron was associated with ‘reparative autophagocytosis’, and sensitized cells to lysosomal rupture and consequent apoptotic/necrotic death following a second, much lower dose of radiation (20 Gy) 24 h after the first one. A high-molecular-mass derivative of desferrioxamine, which specifically localizes intralysosomally following endocytic uptake, added to the culture medium before either the first or the second dose of radiation, stabilized lysosomes and largely prevented cell death. These observations may provide a biological rationale for fractionated radiation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3