Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era

Author:

Davies G. J.1,Henrissat B.2

Affiliation:

1. Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.

2. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 6098, CNRS and Universités d'Aix-Marseille I and II, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France

Abstract

Simple and complex carbohydrates have been described as ‘the last frontier of molecular and cell biology’. The enzymes that are required for the synthesis and degradation of these compounds provide an enormous challenge in the post-genomic era. This reflects both the extreme chemical and functional diversity of sugars and the difficulties in characterizing both the substrates and the enzymes themselves. The vast myriad of enzymes involved in the synthesis, modification and degradation of oligosaccharides and polysaccharides is only just being unveiled by genomic sequencing. These so-called ‘carbohydrate-active enzymes’ lend themselves to classification by sensitive sequence similarity detection methods. The modularity, often extremely complex, of these enzymes must first be dissected and annotated before high throughput characterization or ‘structural genomics’ approaches may be employed. Once achieved, modular analysis also permits collation of a detailed ‘census’ of carbohydrate-active enzymes for a whole organism or throughout an ecosystem. At the structural level, improvements in X-ray crystallography have opened up a three-dimensional understanding of the way these enzymes work. The mechanisms of many of the glycoside hydrolase families are becoming clearer, yet glycosyltransferases are only slowly revealing their secrets. What is clear from the genomic and structural data is that if we are to harness the latent power of glycogenomics, scientists must consider distant sequence relatives revealed by the sequence families or other sensitive detection methods.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3