Mutations in EPAS1 in congenital heart disease in Tibetans

Author:

Pan Hong12,Chen Qiuhong3,Qi Shenggui3,Li Tengyan1,Liu Beihong12,Liu Shiming3,Ma Xu12,Wang Binbin12

Affiliation:

1. Center for Genetics, National Research Institute for Family Planning, Beijing 100081, China

2. Graduate School of Peking Union Medical College, Beijing, China

3. Qinghai High Altitude Medical Research Institute, No.7, Zhuanchang Road, West District, Xining 810012, China

Abstract

EPAS1 encodes HIF2 and is closely related to high altitude chronic hypoxia. Mutations in the EPAS1 coding sequence are associated with several kinds of human diseases, including syndromic congenital heart disease (CHD). However, whether there are rare EPAS1 coding variants related to Tibetan non-syndromic CHD have not been fully investigated. A group of 286 Tibetan patients with non-syndromic CHD and 250 unrelated Tibetan healthy controls were recruited from Qinghai, China. Sanger sequencing was performed to identify variations in the EPAS1 coding sequence. The novelty of identified variants was confirmed by the examination of 1000G and ExAC databases. Control samples were screened to establish that the rare candidate variants were specific to the Tibetan patients with non-syndromic CHD. Bioinformatics software was used to assess the conservation of the mutations and to predict their effects. The effect of EPAS1 mutations on the transcription of its target gene, VEGF, was assessed by dual-luciferase reporter assay. The mammalian two-hybrid assay was used to study the protein interactions between HIF2 and PHD2 or pVHL. We identified two novel EPAS1 mutations (NM_001430: c.607A>C, p.N203H; c.2170G>T, p.G724W) in two patients. The N203H mutation significantly affected the transcription activity of the VEGF promoter, especially in conditions of hypoxia. The N203H mutation also showed enhanced protein–protein interactions between HIF2 and PHD2, and HIF2 and pVHL, especially in conditions of hypoxia. However, the G724W mutation did not demonstrate the same effects. Our results indicate that EPAS1 mutations might have a potential causative effect on the development of Tibetan non-syndromic CHD.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3