Maggot protein ameliorates dextran sulphate sodium-induced ulcerative colitis in mice

Author:

Wang Rong1,Wang Lei1,Luo Yongzheng2,Wang Daojuan1,Du Ronghui1,Du Jiancheng3,Wang Yong1ORCID

Affiliation:

1. State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China

2. School of Chemistry and Life Sciences, Nanjing University Jinling College, Nanjing, 210089, China

3. Jiangsu Yicheng Bio Technology Co., Ltd., Nantong 226000, China

Abstract

Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Maggots are known as a traditional Chinese medicine named as ‘wu gu chong’. The aim of the present study was to investigate the therapeutic effect of the maggot protein on dextran sulphate sodium (DSS)-induced colitis in C57BL/6 mice. In the present study, female C57BL/6 mice were given sterile water containing 3% DSS to establish the model of UC. Mice were randomly divided into five groups: control group (sterile water), model group (DSS), treatment group (DSS + maggot protein), mesalazine group (DSS + mesalazine), and maggot protein group (sterile water + maggot protein). The mental state, defecate traits, and changes in body weights were recorded daily. The disease activity index (DAI) as a disease severity criterion was calculated based on body weights and stool consistency and bleeding. All the mice were killed on the 12th day. Colon length, colon histological changes, and other inflammatory factors were analyzed and evaluated. The results showed that colitis models of mice were established successfully. Administration of maggot protein markedly suppressed the severity of UC compared with the DSS model group. Furthermore, maggot protein potently ameliorated DSS-induced weight loss, colon shortening, and colon histological injury. Moreover, the maggot protein exerted anti-inflammatory effects via inhibition of the activation of the nuclear factor κB (NFκB) signaling pathway. In summary, treatment by maggot protein was able to improve not only the symptoms of colitis, but also the microscopic inflammation in mice with DSS-induced colitis. The present study may have implications for developing an effective therapeutic strategy for inflammatory bowel diseases (IBDs).

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3