Biochemical analysis of antimicrobial peptides in two different Capsicum genotypes after fruit infection by Colletotrichum gloeosporioides

Author:

Maracahipes Álan C.1,Taveira Gabriel B.1,Mello Erica O.1,Carvalho André O.1,Rodrigues Rosana2,Perales Jonas3,Teixeira-Ferreira André3,Silva Marciele S.1,Rocha Gustavo L.4,Fernandes Kátia Valevski Sales4,Gomes Valdirene M.1ORCID

Affiliation:

1. Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil

2. Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil

3. Laboratório de Toxinologia, Fundação Osvaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil

4. Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil

Abstract

Abstract There are several phytosanitary problems that have been causing serious damage to the Capsicum crops, including anthracnose. Upon attack by certain pathogens, various protein molecules are produced, which are known as proteins related to pathogenesis (PR proteins), including antimicrobial peptides such as protease inhibitors, defensins and lipid transfer proteins (LTPs). The objective of this work is to identify antimicrobial proteins and/or peptides of two genotypes from Capsicum annuum fruits infected with Colletotrichum gloeosporioides. The fungus was inoculated into Capsicum fruits by the deposition of a spore suspension (106 conidia ml−1), and after 24 and 48 h intervals, the fruits were removed from the humid chamber and subjected to a protein extraction process. Protein analysis of the extracts was performed by tricine gel electrophoresis and Western blotting. The distinctive bands between genotypes in the electrophoresis profiles were subjected to mass spectrometry sequencing. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and β-1,3-glucanase activity assays were also performed and extracts were also tested for their ability to inhibit the growth of C. gloeosporioides fungi ‘in vitro’. There were several low molecular weight proteins in all treated samples, and some treatments in which antimicrobial peptides such as defensin, lipid transfer protein (LTP) and protease inhibitor have been identified. It was shown that the green fruits are more responsive to infection, showing the production of antimicrobial peptides in response to injury and inoculation of the fungus, what did not occur in ripe fruits under any treatment.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3