Increased expression of lncRNA FTH1P3 predicts a poor prognosis and promotes aggressive phenotypes of laryngeal squamous cell carcinoma

Author:

Yuan Haozhan1,Jiang Hong2,Wang Yanting1,Dong Yameng2ORCID

Affiliation:

1. Department of Otolaryngology, The First People’s Hospital of Xianyang, Xianyang 712000, People’s Republic of China

2. Department of Otolaryngology, The Nuclear Industry 215 Hospital of Shaanxi Province, Xianyang 712000, People’s Republic of China

Abstract

Abstract Laryngeal squamous cell cancer (LSCC) is a highly aggressive malignancy in the head and neck region. Recent studies have shown that long noncoding RNAs (lncRNAs) are novel transcripts that play an important role in the progression of LSCC. However, the overall pathophysiological regulation of lncRNAs to LSCC is largely unknown. The present study aimed to determine the clinical significances of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) and to identify its potential roles in LSCC. Quantitative real-time PCR (qRT-PCR) showed that FTH1P3 expression was significantly up-regulated in LSCC tissues than that in non-neoplastic tissues. High FTH1P3 expression was positively correlated with the poor differentiation, high T classification, positive lymph node metastasis, and advanced clinical stage. Overall survival analysis showed that high levels of FTH1P3 predicted a poor prognosis in LSCC patients. Moreover, elevated expression of FTH1P3 was found to increase LSCC cell proliferation, migration and invasion, and to inhibit cell apoptosis, Conversely, knockdown of FTH1P3 suppressed LSCC cell proliferation, migration and invasion, and induced cell apoptosis. In addition, overexpression of FTH1P3 resulted in an increase in cells in S phase and a decrease in cells in G0/G1 phase, whereas inhibition of FTH1P3 did the opposite effects. Taken together, these results suggested that increased expression of FTH1P3 predicts a poor prognosis and promotes aggressive phenotypes of LSCC by regulating cell proliferation, migration, invasion, apoptosis, and cell cycle, indicating FTH1P3 may serve as a promising therapeutic biomarker for the treatment of LSCC.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3